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Abstract

We prove that if f is increasing function on [-1,1]then for
each n=12,..., there is an increasing algebraic polynomial p, of

degree 8n such that |/ -p,| <c(p)o? ( f ,lj ,
P n »

Where of is the second order Ditizian - Totik modulus of
smoothness. Also a converse theorem for this direct theorem
were obtained. These results complement the classical
pointwise estimates of the same type for unconstrained

polynomial approximation.

1 .Introduction and Main Results

Several results show that in some sense monotone
approximation by algebraic polynomials performs as well as
unconstrained approximation. For example Lorentz and Zeller,

[7] have shown that for each increasing function f in C(7) ( the
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space of all continuous functions on 7=[-11] ) there is an

increasing polynomial p, of degree »that satisfies

|f =pul <co (f%) , n=12,..  (11)

where o is the modulus of continuity of f.

A general result for (2.1.1) for any k=0,, there are
increasing p, that satisfies

Scnfk ® (f(k),lj , n=12,.. (1.2)
n

/- p.

this result of Lorentz [6], where as the general case was proved
by DeVore [3], the cases k=0,1 are much easier to prove than
the general cases. Since they can be proved using linear
method, in contrast, the proof in [3] uses rather involved non
linear techniques. It is well known that for unconstrained
approximation much improvement can be made in estimates of
the form (1.1) where x is near the end points of 7.

In this thesis, we are interested in pointwise estimates for
monotone approximation, the only result of this type that we

know of is by Beatson [1]. He proved that the estimate

f(x)=pu(x) <co (f,An(x)xel,n=1,2,..

42
I=x +ni2, holds for suitable increasing polynomials p,

A=

whenever f is increasing. Devore and Yn have shown that if f
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is increasing function on 7=[-1,1], then for each n=1.2,.. there is

an increasing polynomial p, of degree nsuch that

2
|f(x)—Pn(x)|§Cw2{fr 1—nX J/

where o, is the second order moduli of smoothness. Among

other things, we shall show that this can be improved to allow
second order modulus of smoothness for the spaces

Lp,0<p<1.

Theorem I: If s is an increasing function in Z,(1)0<p<1

then for each n=12,.. there is an increasing polynomial in

L,(I), of degree (8n) satisfying
1
I pull, =ctpras( 7.1 ) 13
p n)y
Using this theorem we can obtain our second Inverse

inequality:

Theorem II: Let s be an increasing function in

L,(I)0<p<1, then

o3 (f,n7 ), <cpELFY, +clph 2 % (m+ 1P EL(F.

m>n

29



2 .Auxiliary Lemmas

Before we prove our theorems we need the following
notions and lemmas. Our proof is based on a two stage
approximation. We first approximate f by an increasing
piecewise linear function S§,. We then approximate S, by an
increasing algebraic polynomial . §, is the piecewise linear
function that interpolates f at & ,k=-n,..n, if we let s be the
slops

S/:Zﬁ%ﬂlzéka)’ j=—n,..,n—=1 . (ZJ)

Then S, can be represented by using the function

dn(x):lnaxﬁx——éle}aS

n—1

$,()= £ D+s, e+ D)+ Xls, =5, 0,00, 4] 22)

j=n+1
It is clear that S, is increasing if f is also.
We shall now contract a polynomial R, j=-n,..,n-1, as in [4]
that approximate the function @, (x). The construction of R,

begins ~ with trigonometric polynomial 7T,,;=1..,2nwith
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= j=0,1,..2n. Let K, denote the Jackson kernel
n
. nt 8
sm?
Kn (t) = an t 4 (23)
sin —
2

where q, is a constant depending on n chosen so that

TKn(t)dt =1.

-

Here and throughout c(p), ¢, denote absolute constants
depending on p and c(p)c's, values may vary with each

occurrence on the same line.

Define
T(t)= fjfijn (u)du,j=0,1,...2n,[4]
and define
d; (t)= max(n dist (t, i— tist }),1),[4] (2.4)
Now let

rj(x)=T,_;(t), x=cost.

And for xe[-1,1] define
X
R; (x)= _jlr]- (u)du,j=-n,..,n,[4] (2.5)

In particular R_,(x)=x+1=®(x) and R, (x)=0, the points ¢, are
defined by the equations

1-&, =R (1), j=-n...n. If feL (I) we define
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Ln(f)zf(—1)+s_nR_n+ri(sj—Sj_l)Rj. (2.6)

—n+l

with s, defined by (21) if f is increasing, the

5,20, j=-n,.,n—1and since we can also write

Liz(f):f(_1)+2Sj(Rj _Rj+l)'
Now from the definition of the polynomials 7, we have

T, -T,

n-j

>0, hence r-r,20, and thereforer -®, is

J+1) it =

increasing , it follows that L,(f) is increasing,.

We now estimate

E(x)=S,(x)-L,(fx)=2(s, s . Jo (0)-R (). (27)

J

Now for j=-n,.,n—1,x=cost with 0<¢<z, we have

|CDJ.(x)—Rj(xXScn (smt |t f, |Xd1 @) ,[20] (2.8)

Lemma 2.9. |L,(f ]|p <c(p)|f I,
Proof: We have
S ( ;:lsj X Rj(x))'

Then

L) 500 S - o - (xq
6,5, ), x

Jj=—n +1

< x1+

Definition of S, implies
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n-1
1S, (X) <[ (= 1) +]s_n(x + 1) + - _znﬂ\sj ~ 59 |®(x).

Thus
1S, <c|f(x).
And
n-1
Lu(fx)sdf)+ T |sj-siafo; Ry,
j=—n+1

Then (2.2.1) implies
RICPEIS
S5 S

] 5j+1

‘sj where 5, =¢,,-¢,.

Then

L(f 0] <df@)+df) 'S 57 - R,
1

j=—n+

7

andby 5, =¢,, -¢&, :%,we have §;' <cn.

So

L, (f,x)<c|f(x)+ c|f(x)|j:”_%1+1(1 + n‘t — tn_]-‘an_]- (t)y5
<df)+dfix) S 1i4
j=—n+1n

Then by the following [4]

Lemma 2.10 Ifg’ is absolutely continuous and |g"|<M

almost every where on 1. Then for each »=12,. and each xe7,

we have

|g(x)—Ln(g,x)|£cM[ 1-2" ] .

n
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We can prove
Lemma 2.11 If ¢ is absolutely continuous and |[g¢"|<M

almost every where on I, then for each n=1,2,.., and each

xelIwe have

gLl <5

3 .proof of theorem I

Firstly let us introduce the so called Ditzian Totik functional

)

definition as

” 1) . 10 2.,
K2,(p(f n—zj = Hglf(llf -8, + n—zuwzg
P

for feL,(I)0<p<co.
We have

of(f.n™),

Q

- 1
KM( f,—Zj [2].
n P
Given xe7, then from the result above there is a g satisfies

|7 =g, = Pt (r.n™),

and

~loe] < clohor (1), (31)

”f _Ln(f]‘z S”f —g||§ +||g_Ln<g)"Z +||Ln(g)_Ln(fX|Z‘

Then by the linearity, and the boundedness of L, (f), we obtain

[f =LaCFWE <If =8l +lg = Lu (&N +ILall)f - s,
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<l L2 ) ol + s - Lalg).

<)

Lemma (2.11) implies |g—L, (g1|p 7
n

Using (3.1), Lemma( 2.11) and the linearity of L,(f), we have
I~ La (), < b+ ILalf ) sl + 2]
<(te ) elog (£.n71 f + clplog (771

By virtue of Lemma ( 2.9) we have

IF = LG <+l Jos (ron ), + o2 (rn ), ).
<c(plos(f.n),

Since L,(f) is an increasing polynomial of degree < 8n we

have proved theorem 1 &

4 .proof of Theorem II

For givenby =max{i:2'<n}2 =n, we expand p,(x) by
,()= o) =(p,(x)= p, X))+ (p, ()= p, (X)+  +(p(x)= py(x)).

We recall that for m<n  |p, -p,|, <c(p)E, (/)

p

o3 (f.n 'Y, < elp)f —p, L +elphn” o (p,.n™)

<c(p)Ea(F); +elphn™>" [y

<cP)EL(FY, + clphr

7

p
2 pyi
l=1 p

where p,is an algebraic polynomial of best monotone

approximation of degree not greater than or equal 2 it mean
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lf=p.l) =), - (4.1)

Then
1 2 $
o (f.n™), < cp)E, (f)g +c(phn™F ‘le'zi —Pyi-1
1= p
- ! ! p
SC(P)E%(f)Z +c(pn 2 '21 Pyi —P2i1‘p
1=

Then by Bernstein inequality we have

o (1), < cp)EN () + ek Snf £ (.
1=

Applying the inequality

2" <c(p,v) Z(m+l)vP_l,veN [5]

m=2""41

We get

0

ot (£ ), < ep)ENF ), + el D (m 1Y EL(r ), #

m>n
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